Паралелагра́м (ад грэц. parallelos — паралельны і gramme — лінія) — гэта чатырохкутнік, у якога супрацьлеглыя бакі парамі паралельныя, г. зн. ляжаць на паралельных простых лініяў. Прастакутнік, ромб і квадрат зьяўляюцца асобнымі выпадкамі паралелаграма.

Уласьцівасьці

рэдагаваць
 
  • Супрацьлеглыя бакі паралелаграма роўныя
     ,  .
  • Супрацьлеглыя куты паралелаграма роўныя
     
  • Дыяганалі паралелаграма перасякаюцца і пунктам перасячэньня палавіняцца
     ,  .
  • Сума кутоў, прылеглых да аднаго боку, роўная 180°.
  • Сума квадратаў дыяганаляў паралелаграма роўная суме квадратаў яго чатырох бакоў
     

Прыкметы паралелаграма

рэдагаваць
 

Чатырохкутнік ABCD зьяўляецца паралелаграмам, калі выконваецца адна з наступных умоваў:

  1. Супрацьлеглыя бакі парамі роўныя (|AB| = |CD|, |AD| = |BC|).
  2. Супрацьлеглыя куты парамі роўныя (∠A = ∠C, ∠B = ∠D).
  3. Два супрацьлеглыя бакі роўныя і паралельныя (|AB| = |CD|, AB || CD).
  4. Дыяганалі дзеляцца ў пункце іх перасячэньня напалову (|AO| = |OC|, |BO| = |OD|).

Плошчу паралелаграма можна знайсці па наступных формулах:

 

Глядзіце таксама

рэдагаваць