Матэматычны доказ

дэманстрацыя сапраўднасьці матэматычнага сьцьверджаньня

У матэматыцы до́казам называецца ланцуг лягічных вывадаў, які паказвае, што пры якімсьці наборы аксіёмаў і правілаў высновы зьяўляецца слушным пэўнае сьцьверджаньне. У залежнасьці ад кантэксту, можа мецца на ўвазе доказ у рамках пэўнай фармальнай сыстэмы (пабудаваная па адмысловых правілах пасьлядоўнасьць сьцьвярджэньняў, запісаная на фармальнай мове) ці тэкст на натуральнай мове, паводле якога пры жаданьні магчыма аднавіць фармальны доказ. Даказаныя сьцьвярджэньні ў матэматыцы называюць тэарэмамі (у матэматычных тэкстах звычайна лічыцца, што доказ кімсьці знойдзены); калі ні сьцьвярджэньне, ні яго адмаўленьне яшчэ не даказаныя, тады гэтае сьцьвярджэньне называюць гіпотэзай. Часам у працэсе доказу тэарэмы выдзяляюцца доказы меней складаных сьцьвярджэньняў, якія зывуцца лемамі.

Адзін з найстарэйшых фрагмэнтаў Эўклідавай працы «Элемэнты», падручніка, які захаваўся і выкарыстоўваўся на працягу тысячагодзьдзяў дзеля навучаньня мэтадам напісаньня матэматычных доказаў.

Доказ можа абапірацца на відавочныя або агульнапрынятыя зьявы ці выпадкі, вядомыя як аксіёмы[1][2]. Доказы зьяўляюцца прыкладамі дэдуктыўнай развагі й адрозьніваюцца ад індуктыўных або эмпірычных аргумэнтаў. Ён павінен прадэманстраваць, што сьцьвярджэньне заўсёды дакладна, часам шляхам пералічэньня ўсіх магчымых выпадкаў і паказваючы, што яно дакладнае ў кожным зь іх.

Фармальнымі доказамі займаецца спэцыяльная галіна матэматыкі — тэорыя доказаў. Самі фармальныя доказы матэматыкі амаль ніколі не выкарыстоўваюць, бо для чалавечага ўспрыманьня яны вельмі складаныя й часта займаюць занадта шмат месца. Звычайны доказ мае выгляд тэксту, у якім аўтар, абапіраючыся на аксіёмы й даказаныя раней тэарэмы, з дапамогай лягічных сродкаў паказвае праўдзівасьць некаторага сьцьвярджэньня. У адрозьненьне ад іншых навук, у матэматыцы недапушчальныя эмпірычныя доказы, то бок усе сьцьвярджэньні даказваюцца выключна лягічнымі спосабамі. У матэматыцы важную ролю гуляюць матэматычная інтуіцыя й аналёгіі паміж рознымі аб’ектамі й тэарэмамі; аднак, усе гэтыя сродкі выкарыстоўваюцца навукоўцамі толькі пры пошуку доказаў, самі доказы ня могуць грунтавацца на такіх сродках.

  1. ^ Cupillari, Antonella Асновы доказаў = The Nuts and Bolts of Proofs. — Academic Press, 2001. — P. 3.
  2. ^ Gossett, Eric Definition 3.1 // Дыскрэтная матэматыка з доказам = Discrete Mathematics with Proof. — John Wiley and Sons, 2009. — P. 86. — ISBN 0-470-45793-7

Вонкавыя спасылкі

рэдагаваць